Section I

The Calculus BC Exam

AP® Calculus BC Exam

SECTION I: Multiple-Choice Questions

At a Glance

<table>
<thead>
<tr>
<th>Total Time</th>
<th>1 hour, 45 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Questions</td>
<td>45</td>
</tr>
<tr>
<td>Percent of Total Grade</td>
<td>50%</td>
</tr>
<tr>
<td>Writing Instrument</td>
<td>Pencil required</td>
</tr>
</tbody>
</table>

Part A

Number of Questions	28
Time	55 minutes
Electronic Device	None allowed

Part B

Number of Questions	17
Time	50 minutes
Electronic Device	Graphing calculator required

Instructions

Section I of this exam contains 45 multiple-choice questions and 4 survey questions. For Part A, fill in only the ovals for numbers 1 through 28 on page 2 of the answer sheet. For Part B, fill in only the ovals for numbers 76 through 92 on page 3 of the answer sheet. The survey questions are numbers 93 through 96.

Indicate all of your answers to the multiple-choice questions on the answer sheet. No credit will be given for anything written in this exam booklet, but you may use the booklet for notes or scratch work. After you have decided which of the suggested answers is best, completely fill in the corresponding oval on the answer sheet. Give only one answer to each question. If you change an answer, be sure that the previous mark is erased completely. Here is a sample question and answer.

Sample Question

Chicago is a
(A) state
(B) city
(C) country
(D) continent
(E) village

Sample Answer

56
A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

Directions: Solve each of the following problems, using the available space for scratch work. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the exam book. Do not spend too much time on any one problem.

In this exam:

(1) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

(2) The inverse of a trigonometric function f may be indicated using the inverse function notation f^{-1} or with the prefix “arc” (e.g., $\sin^{-1} x = \arcsin x$).
1. At time $t \geq 0$, a particle moving in the xy-plane has velocity vector given by $v(t) = (t^2, 5t)$. What is the acceleration vector of the particle at time $t = 3$?

 (A) $\left(9, \frac{45}{2}\right)$
 (B) $(6, 5)$
 (C) $(2, 0)$
 (D) $\sqrt{306}$
 (E) $\sqrt{61}$

2. \[\int xe^{x^2} dx = \]

 (A) $\frac{1}{2} e^{x^2} + C$
 (B) $e^{x^2} + C$
 (C) $xe^{x^2} + C$
 (D) $\frac{1}{2} e^{2x} + C$
 (E) $e^{2x} + C$

3. \[\lim_{x \to 0} \frac{\sin x \cos x}{x} \]

 (A) -1
 (B) 0
 (C) 1
 (D) $\frac{\pi}{4}$
 (E) nonexistent
4. Consider the series \(\sum_{n=1}^{\infty} e^n / n! \). If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?

(A) \(\lim_{n \to \infty} \frac{e}{n} < 1 \)

(B) \(\lim_{n \to \infty} \frac{n!}{e} < 1 \)

(C) \(\lim_{n \to \infty} \frac{n+1}{e} < 1 \)

(D) \(\lim_{n \to \infty} \frac{e}{n+1} < 1 \)

(E) \(\lim_{n \to \infty} \frac{e}{(n+1)!} < 1 \)

5. Which of the following gives the length of the path described by the parametric equations \(x = \sin(t^3) \) and \(y = e^{5t} \) from \(t = 0 \) to \(t = \pi \)?

(A) \(\int_{0}^{\pi} \sqrt{\sin^2(t^3) + e^{10t}} \, dt \)

(B) \(\int_{0}^{\pi} \sqrt{\cos^2(t^3) + e^{10t}} \, dt \)

(C) \(\int_{0}^{\pi} \sqrt{9t^4 \cos^2(t^3) + 25e^{10t}} \, dt \)

(D) \(\int_{0}^{\pi} \sqrt{3t^2 \cos(t^3) + 5e^{5t}} \, dt \)

(E) \(\int_{0}^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} \, dt \)
6. Let \(f \) be the function defined above. Which of the following statements about \(f \) are true?

I. \(f \) has a limit at \(x = 2 \).

II. \(f \) is continuous at \(x = 2 \).

III. \(f \) is differentiable at \(x = 2 \).

(A) I only

(B) II only

(C) III only

(D) I and II only

(E) I, II, and III

7. Given that \(y(1) = -3 \) and \(\frac{dy}{dx} = 2x + y \), what is the approximation for \(y(2) \) if Euler's method is used with a step size of 0.5, starting at \(x = 1 \)?

(A) -5 \hspace{1cm} (B) -4.25 \hspace{1cm} (C) -4 \hspace{1cm} (D) -3.75 \hspace{1cm} (E) -3.5
8. The function \(f \) is continuous on the closed interval \([2, 13]\) and has values as shown in the table above. Using the intervals \([2, 3], [3, 5], [5, 8], \) and \([8, 13]\), what is the approximation of \(\int_{2}^{13} f(x) \, dx \) obtained from a left Riemann sum?

(A) 6 (B) 14 (C) 28 (D) 32 (E) 50

9. The graph of the piecewise linear function \(f \) is shown in the figure above. If \(g(x) = \int_{-2}^{x} f(t) \, dt \), which of the following values is greatest?

(A) \(g(-3) \) (B) \(g(-2) \) (C) \(g(0) \) (D) \(g(1) \) (E) \(g(2) \)
10. In the xy-plane, what is the slope of the line tangent to the graph of $x^2 + xy + y^2 = 7$ at the point $(2, 1)$?

(A) $-\frac{4}{3}$ (B) $-\frac{5}{4}$ (C) -1 (D) $-\frac{4}{5}$ (E) $-\frac{3}{4}$

11. Let R be the region between the graph of $y = e^{-2x}$ and the x-axis for $x \geq 3$. The area of R is

(A) $\frac{1}{2e^{6}}$ (B) $\frac{1}{e^{6}}$ (C) $\frac{2}{e^{6}}$ (D) $\frac{\pi}{2e^{6}}$ (E) infinite
10. In the xy-plane, what is the slope of the line tangent to the graph of \(x^2 + xy + y^2 = 7 \) at the point (2, 1)?

(A) \(-\frac{4}{3}\) (B) \(-\frac{5}{4}\) (C) \(-1\) (D) \(-\frac{4}{5}\) (E) \(-\frac{3}{4}\)

11. Let \(R \) be the region between the graph of \(y = e^{-2x} \) and the x-axis for \(x \geq 3 \). The area of \(R \) is

(A) \(\frac{1}{2e^6}\) (B) \(\frac{1}{e^6}\) (C) \(\frac{2}{e^6}\) (D) \(\frac{\pi}{2e^6}\) (E) infinite
12. Which of the following series converges for all real numbers x?

(A) $\sum_{n=1}^{\infty} \frac{x^n}{n}$

(B) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

(C) $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$

(D) $\sum_{n=1}^{\infty} \frac{e^n x^n}{n!}$

(E) $\sum_{n=1}^{\infty} \frac{n! x^n}{e^n}$

13. $\int_{1}^{e} \frac{x^2 + 1}{x} \, dx =$

(A) $\frac{e^2 - 1}{2}$ (B) $\frac{e^2 + 1}{2}$ (C) $\frac{e^2 + 2}{2}$ (D) $\frac{e^2 - 1}{e^2}$ (E) $\frac{2e^2 - 8e + 6}{3e}$
14. The polynomial function f has selected values of its second derivative f'' given in the table above. Which of the following statements must be true?

(A) f is increasing on the interval $(0, 2)$.
(B) f is decreasing on the interval $(0, 2)$.
(C) f has a local maximum at $x = 1$.
(D) The graph of f has a point of inflection at $x = 1$.
(E) The graph of f changes concavity in the interval $(0, 2)$.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(x)$</td>
<td>5</td>
<td>0</td>
<td>-7</td>
<td>4</td>
</tr>
</tbody>
</table>

15. If $f(x) = (\ln x)^2$, then $f''(\sqrt{e}) =$

(A) $\frac{1}{e}$ (B) $\frac{2}{e}$ (C) $\frac{1}{2\sqrt{e}}$ (D) $\frac{1}{\sqrt{e}}$ (E) $\frac{2}{\sqrt{e}}$
16. What are all values of x for which the series $\sum_{n=1}^{\infty} \left(\frac{2}{x^2 + 1} \right)^n$ converges?

(A) $-1 < x < 1$
(B) $x > 1$ only
(C) $x \geq 1$ only
(D) $x < -1$ and $x > 1$ only
(E) $x \leq -1$ and $x \geq 1$

17. Let h be a differentiable function, and let f be the function defined by $f(x) = h(x^2 - 3)$. Which of the following is equal to $f'(2)$?

(A) $h'(1)$
(B) $4h'(1)$
(C) $4h'(2)$
(D) $h'(4)$
(E) $4h'(4)$
18. In the xy-plane, the line $x + y = k$, where k is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of k?
(A) –3 (B) –2 (C) –1 (D) 0 (E) 1

19. \[
\int \frac{7x}{(2x - 3)(x + 2)} \, dx =
\]
(A) $\frac{3}{2} \ln|2x - 3| + 2 \ln|x + 2| + C$
(B) $3 \ln|2x - 3| + 2 \ln|x + 2| + C$
(C) $3 \ln|2x - 3| - 2 \ln|x + 2| + C$
(D) $-\frac{6}{(2x - 3)^2} - \frac{2}{(x + 2)^2} + C$
(E) $-\frac{3}{(2x - 3)^2} - \frac{2}{(x + 2)^2} + C$
20. What is the sum of the series $1 + \ln 2 + \frac{(\ln 2)^2}{2!} + \cdots + \frac{(\ln 2)^n}{n!} + \cdots$?

(A) $\ln 2$
(B) $\ln(1 + \ln 2)$
(C) 2
(D) e^2
(E) The series diverges.

21. A particle moves along a straight line. The graph of the particle’s position $x(t)$ at time t is shown above for $0 < t < 6$. The graph has horizontal tangents at $t = 1$ and $t = 5$ and a point of inflection at $t = 2$. For what values of t is the velocity of the particle increasing?

(A) $0 < t < 2$
(B) $1 < t < 5$
(C) $2 < t < 6$
(D) $3 < t < 5$ only
(E) $1 < t < 2$ and $5 < t < 6$
22. The table above gives values of \(f \), \(f' \), \(g \), and \(g' \) for selected values of \(x \). If \(\int_0^1 f'(x)g(x) \, dx = 5 \), then
\[
\int_0^1 f(x)g'(x) \, dx =
\]
(A) -14 (B) -13 (C) -2 (D) 7 (E) 15

23. If \(f(x) = x \sin(2x) \), which of the following is the Taylor series for \(f \) about \(x = 0 \) ?

(A) \(x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \ldots \)

(B) \(x - \frac{4x^3}{2!} + \frac{16x^5}{4!} - \frac{64x^7}{6!} + \ldots \)

(C) \(2x - \frac{8x^3}{3!} + \frac{32x^5}{5!} - \frac{128x^7}{7!} + \ldots \)

(D) \(2x^2 - \frac{2x^4}{3!} + \frac{2x^6}{5!} - \frac{2x^8}{7!} + \ldots \)

(E) \(2x^2 - \frac{8x^4}{3!} + \frac{32x^6}{5!} - \frac{128x^8}{7!} + \ldots \)
24. Which of the following differential equations for a population \(P \) could model the logistic growth shown in the figure above?

(A) \(\frac{dP}{dt} = 0.2P - 0.001P^2 \)

(B) \(\frac{dP}{dt} = 0.1P - 0.001P^2 \)

(C) \(\frac{dP}{dt} = 0.2P^2 - 0.001P \)

(D) \(\frac{dP}{dt} = 0.1P^2 - 0.001P \)

(E) \(\frac{dP}{dt} = 0.1P^2 + 0.001P \)

25. Let \(f \) be the function defined above, where \(c \) and \(d \) are constants. If \(f \) is differentiable at \(x = 2 \), what is the value of \(c + d \) ?

(A) \(-4\) \hspace{1cm} (B) \(-2\) \hspace{1cm} (C) \(0\) \hspace{1cm} (D) \(2\) \hspace{1cm} (E) \(4\)
26. Which of the following expressions gives the total area enclosed by the polar curve \(r = \sin^2 \theta \) shown in the figure above?

(A) \(\frac{1}{2} \int_0^\pi \sin^2 \theta \ d\theta \)

(B) \(\int_0^\pi \sin^2 \theta \ d\theta \)

(C) \(\frac{1}{2} \int_0^\pi \sin^4 \theta \ d\theta \)

(D) \(\int_0^\pi \sin^4 \theta \ d\theta \)

(E) \(2 \int_0^\pi \sin^4 \theta \ d\theta \)
27. Which of the following could be the slope field for the differential equation \(\frac{dy}{dx} = y^2 - 1 \)?

(A)

(B)

(C)

(D)

(E)
28. In the xy-plane, a particle moves along the parabola \(y = x^2 - x \) with a constant speed of \(2\sqrt{10} \) units per second. If \(\frac{dx}{dt} > 0 \), what is the value of \(\frac{dy}{dt} \) when the particle is at the point (2, 2) ?

(A) \(\frac{2}{3} \) \hspace{1cm} (B) \(\frac{2\sqrt{10}}{3} \) \hspace{1cm} (C) 3 \hspace{1cm} (D) 6 \hspace{1cm} (E) 6\sqrt{10}
CALCULUS BC
SECTION I, Part B
Time—50 minutes
Number of questions—17

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS ON THIS PART OF THE EXAM.

Directions: Solve each of the following problems, using the available space for scratch work. After examining the form of the choices, decide which is the best of the choices given and fill in the corresponding oval on the answer sheet. No credit will be given for anything written in the exam book. Do not spend too much time on any one problem.

BE SURE YOU ARE USING PAGE 3 OF THE ANSWER SHEET TO RECORD YOUR ANSWERS TO QUESTIONS NUMBERED 76-92.

YOU MAY NOT RETURN TO PAGE 2 OF THE ANSWER SHEET.

In this exam:

(1) The exact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among the choices the number that best approximates the exact numerical value.

(2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

(3) The inverse of a trigonometric function f may be indicated using the inverse function notation f^{-1} or with the prefix "arc" (e.g., $\sin^{-1}x = \arcsin x$).

Unauthorized copying or reuse of any part of this page is illegal.
76. The graph of f', the derivative of a function f, is shown above. The domain of f is the open interval $0 < x < d$. Which of the following statements is true?

(A) f has a local minimum at $x = c$.

(B) f has a local maximum at $x = b$.

(C) The graph of f has a point of inflection at $(a, f(a))$.

(D) The graph of f has a point of inflection at $(b, f(b))$.

(E) The graph of f is concave up on the open interval (c, d).

77. Water is pumped out of a lake at the rate $R(t) = 12\sqrt{\frac{t}{t + 1}}$ cubic meters per minute, where t is measured in minutes. How much water is pumped from time $t = 0$ to $t = 5$?

(A) 9.439 cubic meters

(B) 10.954 cubic meters

(C) 43.816 cubic meters

(D) 47.193 cubic meters

(E) 54.772 cubic meters
78. The graph of a function f is shown above. For which of the following values of c does $\lim_{x \to c} f(x) = 1$?

(A) 0 only
(B) 0 and 3 only
(C) -2 and 0 only
(D) -2 and 3 only
(E) -2, 0, and 3

79. Let f be a positive, continuous, decreasing function such that $a_n = f(n)$. If $\sum_{n=1}^{\infty} a_n$ converges to k, which of the following must be true?

(A) $\lim_{n \to \infty} a_n = k$
(B) $\int_1^n f(x) \, dx = k$
(C) $\int_1^\infty f(x) \, dx$ diverges.
(D) $\int_1^\infty f(x) \, dx$ converges.
(E) $\int_1^\infty f(x) \, dx = k$
80. The derivative of the function \(f \) is given by \(f'(x) = x^2 \cos(x^2) \). How many points of inflection does the graph of \(f \) have on the open interval \((-2, 2)\) ?

(A) One (B) Two (C) Three (D) Four (E) Five

81. Let \(f \) and \(g \) be continuous functions for \(a \leq x \leq b \). If \(a < c < b \), \(\int_a^b f(x) \, dx = P \), \(\int_c^b f(x) \, dx = Q \), \(\int_a^b g(x) \, dx = R \), and \(\int_c^b g(x) \, dx = S \), then \(\int_a^c (f(x) - g(x)) \, dx = \)

(A) \(P - Q + R - S \)
(B) \(P - Q - R + S \)
(C) \(P - Q - R - S \)
(D) \(P + Q - R - S \)
(E) \(P + Q - R + S \)
82. If $\sum_{n=1}^{\infty} a_n$ diverges and $0 \leq a_n \leq b_n$ for all n, which of the following statements must be true?

(A) $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

(B) $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.

(C) $\sum_{n=1}^{\infty} (-1)^n b_n$ diverges.

(D) $\sum_{n=1}^{\infty} b_n$ converges.

(E) $\sum_{n=1}^{\infty} b_n$ diverges.

83. What is the area enclosed by the curves $y = x^3 - 8x^2 + 18x - 5$ and $y = x + 5$?

(A) 10.667 (B) 11.833 (C) 14.583 (D) 21.333 (E) 32
84. Let \(f \) be a function with \(f(3) = 2, \ f'(3) = -1, \ f''(3) = 6, \) and \(f'''(3) = 12. \) Which of the following is the third-degree Taylor polynomial for \(f \) about \(x = 3 \)?

(A) \(2 - (x - 3) + 3(x - 3)^2 + 2(x - 3)^3 \)

(B) \(2 - (x - 3) + 3(x - 3)^2 + 4(x - 3)^3 \)

(C) \(2 - (x - 3) + 6(x - 3)^2 + 12(x - 3)^3 \)

(D) \(2 - x + 3x^2 + 2x^3 \)

(E) \(2 - x + 6x^2 + 12x^3 \)

85. A particle moves on the x-axis with velocity given by \(v(t) = 3t^4 - 11t^2 + 9t - 2 \) for \(-3 \leq t \leq 3\). How many times does the particle change direction as \(t \) increases from \(-3\) to \(3\)?

(A) Zero \hspace{1cm} (B) One \hspace{1cm} (C) Two \hspace{1cm} (D) Three \hspace{1cm} (E) Four
86. On the graph of \(y = f(x) \), the slope at any point \((x, y)\) is twice the value of \(x\). If \(f(2) = 3 \), what is the value of \(f(3) \)?

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

87. An object traveling in a straight line has position \(x(t)\) at time \(t\). If the initial position is \(x(0) = 2\) and the velocity of the object is \(v(t) = \sqrt{1 + t^2}\), what is the position of the object at time \(t = 3\)?

(A) 0.431 (B) 2.154 (C) 4.512 (D) 6.512 (E) 17.408
88. For all values of x, the continuous function f is positive and decreasing. Let g be the function given by

$$g(x) = \int_{2}^{x} f(t) \, dt.$$

Which of the following could be a table of values for g?

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

89. The function f is continuous for $-2 \leq x \leq 2$ and $f(-2) = f(2) = 0$. If there is no c, where $-2 < c < 2$, for which $f''(c) = 0$, which of the following statements must be true?

(A) For $-2 < k < 2$, $f''(k) > 0$.

(B) For $-2 < k < 2$, $f''(k) < 0$.

(C) For $-2 < k < 2$, $f''(k)$ exists.

(D) For $-2 < k < 2$, $f''(k)$ exists, but f' is not continuous.

(E) For some k, where $-2 < k < 2$, $f''(k)$ does not exist.
90. The table above gives values of the differentiable functions f and g and of their derivatives f' and g', at selected values of x. If $h(x) = f(g(x))$, what is the slope of the graph of h at $x = 2$?

(A) -10 (B) -6 (C) 5 (D) 6 (E) 10

91. Let f be the function given by $f(x) = \int_{1/3}^{x} \cos\left(\frac{1}{t^2}\right) dt$ for $1/3 \leq x \leq 1$. At which of the following values of x does f attain a relative maximum?

(A) 0.357 and 0.798 (B) 0.4 and 0.564 (C) 0.4 only (D) 0.461 (E) 0.999
92. The figure above shows the graphs of the functions \(f \) and \(g \). The graphs of the lines tangent to the graph of \(g \) at \(x = -3 \) and \(x = 1 \) are also shown. If \(B(x) = g(f(x)) \), what is \(B'(-3) \)?

(A) \(-\frac{1}{2} \)
(B) \(-\frac{1}{6} \)
(C) \(\frac{1}{6} \)
(D) \(\frac{1}{3} \)
(E) \(\frac{1}{2} \)
93. Which graphing calculator did you use during the exam?
 (A) Casio 6300, Casio 7300, Casio 7400, Casio 7700, TI-73, TI-80, or TI-81
 (B) Casio 9700, Casio 9800, Sharp 9200, Sharp 9300, TI-82, or TI-85
 (C) Casio 9750, Casio 9850, Casio 9860, Casio FX 1.0, Sharp 9600, Sharp 9900, TI-83, TI-83 Plus, TI-83 Plus Silver, TI-84 Plus, TI-84 Plus Silver, TI-86, or TI-Nspire
 (D) Casio 9970, Casio Algebra FX 2.0, HP 38G, HP 39 series, HP 40G, HP 48 series, HP 49 series, HP 50 series, TI-89, TI-89 Titanium, or TI-Nspire CAS
 (E) Some other graphing calculator

94. During your Calculus BC course, which of the following best describes your calculator use?
 (A) I used my own graphing calculator.
 (B) I used a graphing calculator furnished by my school, both in class and at home.
 (C) I used a graphing calculator furnished by my school only in class.
 (D) I used a graphing calculator furnished by my school mostly in class, but occasionally at home.
 (E) I did not use a graphing calculator.

95. During your Calculus BC course, which of the following describes approximately how often a graphing calculator was used by you or your teacher in classroom learning activities?
 (A) Almost every class
 (B) About three-quarters of the classes
 (C) About one-half of the classes
 (D) About one-quarter of the classes
 (E) Seldom or never

96. During your Calculus BC course, which of the following describes the portion of testing time you were allowed to use a graphing calculator?
 (A) All or almost all of the time
 (B) About three-quarters of the time
 (C) About one-half of the time
 (D) About one-quarter of the time
 (E) Seldom or never